
Part II

Multivariate Linear Models

Yoosoon Chang
Department of Economics

Indiana University

and

Joon Y. Park
Department of Economics

Indiana University
and

Department of Economics
Sungkyunkwan University

January 2012

c⃝ 2012 by Yoosoon Chang & Joon Y. Park
All rights reserved.



2

1. Multivariate Regression Models

1.1 The Model

The model we consider is given by

y′i = x′iB + u′i

for i = 1, . . . , n, where n is the sample size. We let {yi} and {ui} be ℓ-dimensional, and {xi}
bem-dimensional vectors, that are interpreted similarly as in the univariate linear regression
model studied previously. The m× ℓ matrix B is the matrix of regression coefficients. The
model thus specifies ℓ-linear relationships between yi and xi, each of which is given by
the corresponding column of the coefficient matrix B. It is just a multiple of univariate
regressions with common regressors, pulled together. In matrix form, the model is written
as

Y = XB + U

where the matrices are defined as usual, i.e., observations along the rows and variables along
the columns.

The errors {ui} are assumed to be (0,Σ) and mutually uncorrelated. Therefore, Euiu
′
j =

Σ for i = j and 0 otherwise. Moreover, if we use the convention var(Z) = var(vecZ), then

var (U) = In ⊗ Σ

under our assumption.

1.2 Multivariate Least Squares

Since
∑

p,q z
2
pq = trZ ′Z for a matrix Z = (zpq), the least squares (LS) estimator B̂ of B is

defined by
B̂ = argmin

B
tr (Y −XB)′(Y −XB) (1)

If we denote by q(B) = tr (Y −XB)′(Y −XB), then we have

dq(B) = −2 tr (X ′Y −X ′XB)′ dB

and the FOC dq(B) = 0 yields
B̂ = (X ′X)−1X ′Y

Similarly as in the univariate regression theory, let Ŷ = XB̂ and Û = Y −XB̂. Then

Ŷ = PXY and Û = (I − PX)Y

where PX = X(X ′X)−1X ′, i.e., the projection on the range R(X) of X, as in the univariate
regression.

It is easy to see that B̂ is indeed the solution for the minimization problem (1), since

q(B) = tr (Y −XB̂)′(Y −XB̂) + tr (B̂ −B)′X ′X(B̂ −B) (2)
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Notice that the LS estimate B̂ is nothing but the LS estimates of the ℓ-univariate regressions
stacked together. That is, the k-th column of B̂ is precisely the LS estimate from the
regression of yk on X, where yk is the k-th column of Y .

Given the LS estimate B̂, we may estimate Σ by

Σ̂ =
1

n

n∑
t=1

ûiû
′
i

(
=

1

n
Û ′Û

)
=

1

n
Y ′(I − PX)Y

(
=

1

n
U ′(I − PX)U

)

1.3 ML Estimation

Under normality, U ∼ N (0, In ⊗ Σ) and its density is given by

p(U) = (2π)−
nℓ
2 (detΣ)−

n
2 etr

(
−1

2
Σ−1U ′U

)
where etr (·) := exp (tr(·)). To obtain the density in the above form, we used

det (In ⊗ Σ) = (det Σ)n

(vecU)′(In ⊗ Σ−1)(vecU) = trΣ−1U ′U

The density of Y is obtained simply by replacing U with Y − XB, since the Jacobian of
transformation is 1.

Ignoring the constant term, the loglikelihood function is therefore given by

ℓ(B,Σ) = −n

2
log(detΣ)− 1

2
trΣ−1(Y −XB)′(Y −XB)

Totally differentiating ℓ(B,Σ) with respect to B and Σ yields the first order conditions

trΣ−1(X ′Y −X ′XB)′ dB = 0

trΣ−1
(
I − 1

n
(Y −XB)′(Y −XB)Σ−1

)
dΣ = 0

To obtain the second FOC above, we use

(a) d log(det Σ) = trΣ−1 dΣ
(b) dΣ−1 = −Σ−1 dΣΣ−1

For (a), note that (∂/∂σpq) det Σ = cpq, where Σ = (σpq) and cpq is the cofactor of σpq so
that adjΣ = (cqp). The result is then immediate from adjΣ/det Σ = Σ−1. Part (b) can
easily be obtained by totally differentiating the identity ΣΣ−1 = I.

It is now easy to see that the FOC’s yield the LS estimators B̂ and Σ̂ which we obtained
earlier. It is possible to show that these estimators indeed maximize the likelihood function
of Y . That B̂ maximizes the likelihood function is obvious from (2). Moreover, we may

apply the result in Problem 1 (with A = Σ̂
1
2Σ−1Σ̂

1
2 ) to deduce that

ℓ(B̂,Σ) = −n

2
log(det Σ)− n

2
trΣ−1Σ̂
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is maximized when Σ = Σ̂. Consequently, the LS estimation is identical to the ML esti-
mation under normality in the multivariate regression models as is in univariate regression
models.

1.4 Statistical Properties of the Estimators

We derive various statistical properties of the estimators B̂ and Σ̂.

Theorem 1 We have

(a) E (B̂) = B and var (B̂) = (X ′X)−1 ⊗ Σ

(b) E (Σ̂) =
n−m

n
Σ

Proof Part (a) is straightforward from

B̂ = B + (X ′X)−1X ′U and vec B̂ = vecB + ((X ′X)−1X ′ ⊗ Iℓ) vecU

For part (b), write

Σ̂ =
1

n
U ′(I − PX)U =

1

n
V ′V

with V := H ′U , where H is an n×(n−m) matrix such that I−PX = HH ′ and H ′H = In−m.
Now, vecV = (H ′ ⊗ I)vecU and therefore varV = In−m ⊗ Σ, i.e., the (n−m) rows vi’s of
V are uncorrelated and each has covariance matrix Σ. Then it follows that

EV ′V = E

(
n−m∑
i=1

viv
′
i

)
= (n−m)Σ

and the proof is now complete.

The B̂ is unbiased, but Σ̂ is not. However, we can easily construct an unbiased estimator
for Σ as follows

Σ̃ =
1

n−m
Y ′(I − PX)Y

For the models with normal errors, the distribution of B̂ is obviously normal with mean
and variance given in part (a) of Theorem 1, since B̂ is a linear transformation of Y . To
characterize the distribution of Σ̂, we introduce

Definition 1 Let zi ∼ i.i.d. N(0,Σp). Then

n∑
i=1

ziz
′
i ∼ Wp (n,Σ)

i.e., Wishart distribution with n degrees of freedom and covariance matrix Σ. The p is the
dimensionality parameter.

Clearly, Wishart distribution is the multivariate generalization of chi-square distribution.
Following the proof of part (b) in Theorem 1, we may readily show that the distribution of
Σ̂ is Wishart, as we summarize below:
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Theorem 2 Under normality, we have

(a) B̂ ∼ N
(
B, (X ′X)−1 ⊗ Σ

)
(b) n Σ̂ ∼ Wℓ (n−m,Σ)

The asymptotic theory for the multivariate regression model is identical to that for
the univariate regression model which we developed earlier. Under appropriate regularity
conditions to ensure

(a)
X ′X

n
=
∑ xix

′
i

n
→p M > 0 and (b)

X ′U

n
=
∑ xiu

′
i

n
→p 0

B̂ is consistent. Moreover, if the condition

(c)
X ′U√

n
=
∑ xiu

′
i√
n

→d N(0,M ⊗ Σ)

is satisfied, then we have

√
n (B̂ −B) →d N

(
0,M−1 ⊗ Σ

)
(3)

since vec (B̂−B) =
(
(X ′X)−1 ⊗ Iℓ

)
vecX ′U . The consistency of Σ̂ can also be easily shown,

exactly as in the proof of the consistency of σ̂2.

1.5 Hypothesis Testing

The theory of hypothesis testing in the multivariate regression is largely identical to that
in the univariate regression model. Therefore, we only briefly summarize the results here.
The general linear hypothesis on the coefficient matrix B can be formulated as

R vecB = r

where R and r are known with dimensions q×mℓ and q× 1, respectively, just as defined in
the univariate case. Usually, the test is based upon the following Wald statistic W

W = (RvecB̂ − r)′
(
R((X ′X)−1 ⊗ Σ̂)R′

)−1
(RvecB̂ − r)

The limit distribution of W follows immediately from the asymptotic results established in
(3) as

W →d χ2
q

The Σ̂ can of course be replaced by any other consistent estimate for Σ for the asymptotic
chi-square tests.

The finite sample distribution theory of W under normality is, except for some very
simple cases, overly complicated and certainly beyond the scope of this course. Therefore,
the subject will not be developed any further.
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1.6 Exercises

1. Show the following:
(a) vec(ABC) = (C ′ ⊗A)(vecB).
(b) Let x = vecX and y = vecY . Then

∂2

∂x ∂y′
trX ′AY B′ = A⊗B

2. Show that the concentrated loglikelihood

ℓ(B̂,Σ) = −n

2
log(detΣ)− n

2
trΣ−1Σ̂,

derived in Section 1.3 of the lecture note is maximized when Σ = Σ̂.

3. Let B̂ be the GLS estimator for B in the multivariate model

Y = XB + U

with var(U) = Σ1⊗Σ2 for some positive definite matrices Σ1 and Σ2. Show that B̂ minimizes

trΣ−1
2 (Y −XB)′Σ−1

1 (Y −XB)

and
B̂ = (X ′Σ−1

1 X)−1X ′Σ−1
1 Y

4. Consider a multivariate regression model

y′i = x′iB + u′i

where y′i = (y1i, y2i), x
′
i = (x1i, x2i), u

′
i = (u1i, u2i),

B =

(
β11 β12
β21 β22

)

and (ui) are iid with mean 0 and variance

Σ =

(
σ11 σ12
σ21 σ22

)

Answer the following questions:

(a) Let β21 = 0 be known. Compare the single equation and system estimators of the
parameters β11, β12 and β22.
(b) Let β21 = 0 and σ12 = σ21 = 0 be known. How would your answer to (a) change?
(c) Assume Σ = σ2I. Consider the hypothesis β11 + β12 = 1. Explain how to compute the
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Wald statistic in two different ways: one using the OLS estimates for β11 and β12, and the
other based on the restricted and unrestricted sums of residuals.

5. Consider the regression models

(A) yij = x′ijβ + εij

(B) yij = x′ijβj + εij

where i = 1, . . . , n and j = 1, 2. Let εi = (ε1i, ε2i)
′ be iid with covariance matrix given by

one of

Σ1 =

(
σ2
1 0
0 σ2

2

)
, Σ2 =

(
σ2
1 σ12

σ21 σ2
2

)
.

Answer the following questions:

(a) Explain how to find the feasible GLS estimate for β in regression (A) when the error
covariance matrix is given by Σ1.
(b) Find the GLS estimates of βj , j = 1, 2, in regression (B) when the error covariance
matrix is given by Σ1 or Σ2. Compare the GLS and OLS estimates in each case. What if
xi1 = xi2 in regression (B)?

2. Seemingly Unrelated Regressions

2.1 The Model

The seemingly unrelated regressions (SUR) is a system of regressions given by

yk = Xkβk + uk

for k = 1, . . . , ℓ, where yk, Xk, βk and uk are defined exactly as in the matrix representation
for the univariate regression model and the subscript k denotes the k-th equation, for each
of which we have n observations. To analyze such a system of regressions, we stack the
ℓ-regressions and write it as y1

...
yℓ

 =

 X1

. . .

Xℓ


 β1

...
βℓ

+

 u1
...
uℓ


or as

y = Xβ + u

in matrix form. We let Eupu
′
q = σpqI and Σ = (σpq). Then it follows that varu = Σ⊗ In.

Note that for a random matrix U such that u = vecU we have varU = var(vecU) = In⊗Σ.

The multivariate regression model considered in the previous section is just a special
SUR for which X1 = · · · = Xℓ, i.e., the SUR with the same set of regressors. If we denote
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this common regressor by X0, then we may write the multivariate regression model in SUR
form, using

vecY = (I ⊗X0) vecB + vecU

and defining y = vecY,X = I ⊗X0, β = vecB and u = vecU .

2.2 Estimation

The SUR system can of course be most efficiently estimated by GLS, which yields

β̂ =
(
X ′(Σ−1 ⊗ I)X

)−1
X ′(Σ−1 ⊗ I)y (4)

This is called the SUR estimator, which is nothing but the system GLS estimator. When Σ
is unknown, as is usually the case, a feasible GLS estimator is used. To estimate Σ, we use
any consistent estimate β̂k of βk (the OLS estimate, for instance) to get ûk = yk − Xkβ̂k
for k = 1, . . . , ℓ. Using {ûk}, we may obtain σ̂pq = û′pûq/n for p, q = 1, . . . , ℓ and construct

a consistent estimate Σ̂ = (σ̂pq).

Under normality, the density of u is precisely as in the multivariate regression model
with U defined from u by vecU = u. Moreover, the density of y can also be subsequently
obtained from that of U by replacing the k-th column of U by yk−Xkβk. The SUR estimator
defined in (4) is, of course, the ML estimator of β under normality. Given the ML estimate
of β, the ML estimate of Σ is the same as that given for the multivariate regression. That
is, if we define Û from û, which is the ML (or SUR, equivalently) residuals, as we define U
from u, then

Σ̂ =
1

n
Û ′Û

The ML estimates of β and Σ can therefore be obtained by the usual iterative scheme for
the feasible GLS.

It should be noted that the system OLS for the SUR model is reduced to the single
equation least squares (SELS). If we denote by β̃ the OLS estimator for β in the SUR
system, then

β̃ = (X ′X)−1X ′y

=

 (X ′
1X1)

−1X ′
1y1

...
(X ′

ℓXℓ)
−1X ′

ℓyℓ


which is just the vector of the OLS estimates obtained by running each regression separately.
For the SUR system, GLS is more efficient than OLS since the errors are nonspherical. This
in turn implies that the SUR procedure is generally more efficient than the SELS, given the
above result. Here comes the explanation for the name SUR: We may improve efficiency by
pooling together regressions with nonoverlapping sets of regressors (and therefore seemingly
unrelated).
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2.3 Equivalence of SUR and SELS

There are two obvious cases that the SUR procedure becomes identical to the SELS (or the
system OLS). First, this happens when σpq = 0 for all p ̸= q, i.e., there are no correlations
between regression errors. Secondly, such case arises when all the regressors are identical, as
in the multivariate regression model, and X is given in the form I⊗X0. It is straightforward
to show through direct computation that SUR is identical to SELS in these two cases.

The following theorem tells us exactly when the SUR procedure does not improve upon
the SELS:

Theorem 3 The SUR and SELS are identical if and only if

σpq = 0 or R(Xp) = R(Xq)

for all p ̸= q.

Proof By the Kruskal’s theorem, the two are identical if and only if R ((Σ⊗ I)X) =
R(X). Since rank ((Σ⊗ I)X) = rank(X), it suffices to show that

R ((Σ⊗ I)X) ⊂ R(X)

which holds if and only if there exists a matrix T such that

(Σ⊗ I)X = XT

If we write T = (Tpq) with submatrices Tpq, then it implies

σpqXq = XpTpq

for all p, q, which is true if and only if

σpq = 0 or R(Xp) = R(Xq)

for all p ̸= q, as was to be shown.

2.4 Exercises

1. Consider a SUR model given by y1
...
yℓ

 =

 X1 0
. . .

0 Xℓ


 β1

...
βℓ

+

 u1
...
uℓ


where yk is (n× 1), Xk (n×m), βk (m× 1) and uk (n× 1) for all k = 1, . . . , ℓ. We assume
that Euk = 0 and Euju

′
k = σjkIn for all j, k = 1, . . . , ℓ. We also assume Xk is non-random

for all k = 1, . . . , ℓ for simplicity. We may write the model as

y = Xβ + u,
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where y, X, β and u are defined as in the above equation. Answer the following:

(a) Derive the asymptotic distribution of SUR estimator for β = (β′
1, . . . , βℓ)

′.

(b) Show that the SUR estimator for β is the same as a stack of equation-by-equation OLS
estimator when σjk = 0 for all j ̸= k.

(c) Show that the SUR estimator for β is the same as a stack of equation-by-equation OLS
estimator when X1 = . . . = Xℓ.

2. Consider the standard SUR system y1
...
yℓ

 =

 X1

. . .

Xℓ


 β1

...
βℓ

+

 u1
...
uℓ


as specified in Question 1 above. We let Eupu

′
q = σpqI and Σ = (σpq). Also, let β =

(β1, . . . , βℓ)
′. Explain in detail how to obtain the ML estimators of the parameters β and Σ

under normality. Show rigorously, in particular, that the proposing estimators are indeed
the ML estimators under normality. Recall that the density for n-dimensional multivariate
normal distribution with mean µ and variance Ω is given by

p(x) =

(
1

2π

)n
2

(det Ω)−
1
2 exp

(
−1

2
(x− µ)′Ω−1(x− µ)

)

3. Consider a model

y1i = α′x1i + ε1i

y2i = α′x2i + β′x3i + ε2i

where {εi}, εi = (ε1i, ε2i)
′, are iid with var(εi) = σ2I. Let α̂1 and α̂2 be the OLS estimators

based respectively on the first and second regressions, and α̂ be the system OLS estimator
of α. Answer the following:

(a) Obtain α̂, and show that it may be written as

α̂ = M∗α̂1 + (I −M∗)α̂2

where
M∗ = (X ′

1X1 +X ′
2(I − PX3)X2)

−1X ′
1X1

(b) Show that α̂ is uncorrelated with (α̂1 − α̂2). Using this fact, prove that α̂ has smaller
variance (in positive definite sense) than any estimator of the form

α̃ = Mα̂1 + (I −M)α̂2

(Notice that α̃ = α̂+ (M −M∗)(α̂1 − α̂2)).
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3. Fixed Effects Models

3.1 The Model

The model we consider here is given by

yit = π + µi + νt + x′itβ + εit

for i = 1, . . . , a, t = 1, . . . , b. The subscripts i and t denote individual and time, and the
terms µi and νt capture individual and time effects, respectively. It is assumed that there is
no interaction between them. The errors {εit} are assumed to be uncorrelated (0, σ2

ε). We
let n = ab be the sample size.

In matrix form, the model can be written as

y = ιnπ + (Ia ⊗ ιb)µ+ (ιa ⊗ Ib)ν +Xβ + ε

where y = (y11, y12, . . . , y1b, . . . , ya1, ya2, . . . , yab)
′, and X and ε are defined similarly from

{xit} and {εit}. Moreover, µ = (µ1, . . . , µa)
′ and ν = (ν1, . . . , νb)

′. The identity matrix I
and the vector of ones ι are written with subscripts to specify their dimensions. In the rest
of this section, we use “ ” with a subscript to denote the average over the other subscript.
If no subscript is attached, then it implies the grand mean, i.e., the average over both i and
t. For instance, ȳi, ȳt and ȳ denote, respectively, the averages of yit’s over t, i and both i
and t.

Let the individual and time effects terms µ and ν be fixed and nonrandom. Then we
essentially have a model with dummy variables, and the model is indeed also called dummy
variables model. The parameters µ and ν in the model are, however, unidentified since the
regressors ιn, Ia ⊗ ιb and ιa ⊗ Ib are linearly dependent. Therefore, we need identifying
restrictions on these parameters. The most commonly used restrictions are

a∑
i=1

µi =
b∑

t=1

νt = 0 (5)

so that µ and ν represent the effects purely specific to individuals and times.

3.2 Estimation

We define

I − ιaι
′
a

a
= HaH

′
a and I − ιbι

′
b

b
= HbH

′
b

where Ha and Hb are orthogonal matrices such that H ′
aHa = Ia−1 and H ′

bHb = Ib−1, and
let

H ′
aµ = µ∗ and H ′

bν = ν∗

Notice that HaH
′
aµ = µ and HbH

′
bν = ν due to the identifying restrictions given in (5). We

now write the model with unconstrained parameters µ∗ and ν∗ as

y = ιnπ + (Ha ⊗ ιb)µ
∗ + (ιa ⊗Hb)ν

∗ +Xβ + ε
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This regression is very easy to handle, because the regressors ιn, Ha ⊗ ιb and ιa ⊗Hb are
orthogonal as one can easily check. The projection P on these regressors is just the sum of
projections on each regressor. More explicitly, we have

P =
ιnι

′
n

n
+

(
Ia −

ιaι
′
a

a

)
⊗ ιbι

′
b

b
+

ιaι
′
a

a
⊗
(
Ib −

ιbι
′
b

b

)
= Ia ⊗

ιbι
′
b

b
+

ιaι
′
a

a
⊗ Ib −

ιnι
′
n

n

Let Q = I − P and write the OLS estimate β̂ of β as

β̂ = (X ′QX)−1X ′Qy (6)

Notice that

Ia ⊗
ιbι

′
b

b
,

ιaι
′
a

a
⊗ Ib ,

ιnι
′
n

n

are the matrices that average over t, i and both i and t, respectively. It can therefore be
easily seen that β̂ is the OLS estimate of β in the regression

yit − ȳi − ȳt + ȳ = (xit − x̄i − x̄t + x̄)′β + eit

The OLS estimates of π, µ∗ and ν∗ can be obtained from the regression

y −Xβ̂ = ιnπ + (Ha ⊗ ιb)µ
∗ + (ιa ⊗Hb)ν

∗ + ε

Since the regressors are orthogonal each other, the estimates are identical to those from
three separate regressions. For the estimates of µ and ν, note that

µ = Haµ
∗ and ν = Hbν

∗

We may explicitly write the OLS estimates of π, µ and ν as

π̂ = ȳ − x̄′β̂ , µ̂i = (ȳi − ȳ)− (x̄i − x̄)′β̂ , ν̂t = (ȳt − ȳ)− (x̄t − x̄)′β̂

3.3 Exercises

1. Consider the model
yit = µi + x′itβi + εit

for i = 1, . . . , a and t = 1, . . . , b. Assume {xit} are m-dimensional and nonrandom, and
{εit} are i.i.d. N(0,σ2). Construct the F-statistic to test the hypotheses β1 = · · · = βa.

2. Consider the following regressions with dummy variables

yij = π + µj + x′ijβ + εij ,

yij = νj + x′ijβ + εij

where
∑

j µj = 0.
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(a) Show that the OLS estimates for β from the two regressions are identical.
(b) Let π̂, µ̂j and ν̂j be the OLS estimates for π, µj and νj . Relate π̂, µ̂j and ν̂j .

3. Consider a model given by
yit = π + µt + ηi + εit

for i = 1, . . . , a and t = 1, . . . , b, where (ηi) and (εit) are mutually uncorrelated, and iid
with var(ηi) = σ2

η and var(εit) = σ2
ε . Answer the following:

(a) Obtain the GLS estimator for π and µt’s for t = 1, . . . , b.
(b) Compare the OLS and the GLS estimators.

4. Consider the fixed effect model

yit = π + µi + νt + x′itβ + εit

for i = 1, . . . , a and t = 1, . . . , b, where the errors (εit) are uncorrelated (0, σ2
ε).

(a) Discuss the identifiability of the parameters (µi) and (νt) representing the individual
and time effects.
(b) Provide identifying restrictions on (µi) and (νt) and use them to reparameterize the
given model. Discuss the identifiability of the parameters in the reparameterized model.
(c) Obtain the OLS estimators for the parameters π, (µi), (νt) and β in the original model.

4. Random Effects Models

4.1 The Model

We consider
yit = π + x′tβ + µi + νt + εit

as in the previous section. However, we now let the terms µ and ν representing the individual
and time effects be random, and included in unobserved errors. Assume {µi} and {νt} are
uncorrelated (0, σ2

µ) and (0, σ2
ν), and are uncorrelated with {εit}. The variance of yit is then

the sum of variances of three components, i.e., σ2
µ + σ2

ν + σ2
ε , and for this reason the model

is also called error components model. Write the model in matrix form as

y = ιnπ +Xβ + u

where
u = (Ia ⊗ ιb)µ+ (ιa ⊗ Ib)ν + ε

The variance Σ of u is given by

Σ = σ2
µ(Ia ⊗ ιbι

′
b) + σ2

ν(ιaι
′
a ⊗ Ib) + σ2

εIn
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4.2 Estimation of Regression Coefficients

To analyze the GLS estimates of β and π, we define the following orthogonal pojections
that are mutually orthogonal and sum up to I:

P1 =

(
Ia −

ιaι
′
a

a

)
⊗
(
Ib −

ιbι
′
b

b

)
P2 =

(
Ia −

ιaι
′
a

a

)
⊗ ιbι

′
b

b

P3 =
ιaι

′
a

a
⊗
(
Ib −

ιbι
′
b

b

)
P4 =

ιaι
′
a

a
⊗ ιbι

′
b

b

Then we have

Σ = σ2
εP1 + (bσ2

µ+σ2
ε)P2 + (aσ2

ν+σ2
ε)P3 + (bσ2

µ+aσ2
ν+σ2

ε)P4

Write Σ = σ2
εΣ0 and Σ−1

0 =
∑4

k=1 λkPk, where λk’s are defined appropriately.

Conformably as in the previous section, we write

β̂ = (X ′QX)−1X ′Qy (7)

where Q is now given by

Q = Σ−1
0 − λ4

ιnι
′
n

n

= In − φ1

(
Ia ⊗

ιbι
′
b

b

)
− φ2

(
ιaι

′
a

a
⊗ Ib

)
+ φ3

ιnιn
n

where φ1 = λ1 − λ2, φ2 = λ1 − λ3, φ3 = λ1 − λ2 − λ3, and are explicitly given by

φ1 =
bσ2

µ

bσ2
µ+σ2

ε

, φ2 =
aσ2

ν

aσ2
ν+σ2

ε

, φ3 =
abσ2

µσ
2
ν−σ4

ε

(aσ2
ν+σ2

ε)(bσ
2
µ+σ2

ε)

Moreover, the GLS estimate of π can be obtained from the GLS in y−Xβ̂ = ιnπ+u, which
is identical to the OLS estimate since ιn is an eigenvector of Σ. It is therefore given by

π̂ = ȳ − x̄′β̂ (8)

As a, b → ∞, φ1, φ2, φ3 → 1 and Q becomes the projection used in the definition of the
fixed effect estimator given in (6) in the previous section. In this case, the fixed effects and
random effects models yield the same estimate for β and π asymptotically.
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4.3 Estimation of Error Components

The error components are typically unknown and need to be estimated. We let

σ2
1 = σ2

ε , σ2
2 = bσ2

µ + σ2
ε , σ2

3 = aσ2
ν + σ2

ε

and define

σ̂2
k =

(y −Xβ)′Pk(y −Xβ)

dk
(9)

for k = 1, 2, 3, where dk’s are the dimensions of the projections Pk’s which are explicitly
given by d1 = (a−1)(b−1), d2 = a−1 and d3 = b−1. It is easy to see that Eσ̂2

k = σ2
k.

Notice that the π-term in the quadratic forms in (9) vanishes since Pk’s are orthogonal to
the constant term in the regression.

For the actual computation of σ̂2
k’s in (9), various consistent estimates of β can be used.

The most obvious choice would be the OLS estimate. As an alternative, we may estimate
β for each of σ̂2

k’s based on the regressions

yit − ȳi − ȳt + ȳ = (xit − x̄i − x̄t + x̄)′β + eit (10)

ȳi − ȳ = (x̄i − x̄)′β + ei (11)

ȳt − ȳ = (x̄t − x̄)′β + et (12)

so that (y − Xβ)′Pk(y − Xβ)’s are just multiples of the RSS’s of these regressions. It is
also possible to estimate β from the regression (10) and use this estimate to compute the
RSS’s for the regressions (11) and (12). This is meaningful, since the regressions (11) and
(12) are based only on a and b samples, respectively, whereas the first regression is based
on the entire n samples.

In order to consider the ML estimates for the variances of the error components, note
first that

det Σ = σ2d1
1 σ2d2

2 σ2d3
3 (σ2

2+σ2
3−σ2

1)

in the notation defined above. Moreover, given the ML estimates β̂ and π̂ for β and π, that
are just the GLS estimates given in (7) and (8), we have

(y − ιnπ̂ −Xβ̂)′Σ−1(y − ιnπ̂ −Xβ̂) =
3∑

k=1

(y −Xβ̂)′Pk(y −Xβ̂)

σ2
k

Note that the fourth term vanishes since P4(y− ιnπ̂−Xβ̂) = ȳ− π̂− x̄′β̂ = 0. The presence
of the term σ2

2 + σ2
3 − σ2

1 in detΣ makes complicated the ML estimates for the variances of
the error compontents. Were it not for this term, the estimates defined in (9) would yield
the exact ML estimates. For the two error components model, this complication does not
arise. Note also that the estimates for the σ2

µ and σ2
ν obtained from the estimates for σ2

k’s
can obviously be negative and nonsensical. This problem is not solved as yet.
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4.4 Exercises

1. Consider the random effect model

yit = π + x′itβ + uit

for i = 1, . . . , a and t = 1, . . . , b, with the error term defined as

uit = µi + νt + εit

including the random individual and time effects, (µi) and (νt), which are assumed to be
uncorrelated (0, σ2

µ) and (0, σ2
ν), and also uncorrelated with (εit). Further assume that (εit)

are uncorrelated (0, σ2
ε), and answer the following.

(a) Obtain the GLS estimators of π and β, which are the random effect estimators.
(b) Compare the random effect estimator of β obtained in (a) with the fixed effect estimator
of β obtained in Question 1(c) above. When do they become identical?
(c) Explain in detail how you may obtain the feasible GLS estimator for β.

2. Suppose there are no time effects and νt = 0. Define within- and between-group estimates
β̂w and β̂b of β to be the LS estimates in the regressions

yit − ȳi = (xit − x̄i)
′β + εit

ȳi − ȳ = (x̄i − x̄)′β + εi

respectively. Show that

(a) The fixed effects model yields the within-group estimate β̂w for β.

(b) Show using the identity (A1 + A2)
−1(B1 + B2) = ((A1 + A2)

−1A1)A
−1
1 B1 + ((A1 +

A2)
−1A2)A

−1
2 B2 that the random effects model yields the estimate β̂ of β which we may

write as β̂ = ∆β̂w + (I −∆)β̂b for some ∆.

3. Consider the model given by

yit = π + µi + x′itβ + εit

µi = x̄′iα+ ηi

for i = 1, . . . , a and t = 1, . . . , b, where {εit} and {ηi} are uncorrelated (0,σ2
ε) and (0,σ2

η),
respectively. Write the model as

yit = π + x̄′iα+ x′itβ + uit

where uit = ηi + εit. Show that the GLS estimators π̂, α̂ and β̂ of the parameters π, α and
β are

π̂ = ȳ − x̄′β̂b , α̂ = β̂b − β̂w , β̂ = β̂w

where β̂w and β̂b are as defined in Problem 2.

4. Derive the ML estimates for the variances of the error components for the two error
components model. Explain how to compute them.


