题目: Optimizing Optimal Portfolio Choice
主讲: 金涌
简介:金涌博士现任香港理工大学金融学助理教授。他于2016年获得佛罗里达大学金融学博士及计量金融博士学位, 并且持有香港中文大学风险管理(荣誉)学士及哲学硕士学位。加入香港理工大学之前,曾任摩根士丹利(纽约)策略模型部量化经理,工银国际投行部分析员等。他的研究领域为资产定价,投资学,金融衍生品,以及金融科技跨学科研究,并发表文章于Risk Magazine, Decision Support Systems, Journal of Risk等杂志。
金涌教授在多个国际会议及机构获奖,包括摩根士丹利市场研究优异奖(Prize for Excellence in Financial Markets),及获得包括加拿大IFSID拨付的研究基金在内的多项研究资金支持。他曾任教于佛罗里达大学,并且获得佛罗里达大学惠灵顿商学院最佳博士生教学奖。
时间:2017年4月14日(星期五) 14:00-16:30
地点:新葡萄8883官网amg805会议室
Abstract: This paper proposes a new class of estimators for the optimal portfolio weights under parameter uncertainty. I further provide a tight upper bound for the estimators and a general theoretical lower bound for any optimal portfolio weights estimators. The upper bound convergence rate achieves the minimax lower bound, which shows that the new estimators are the optimal estimators of the optimal portfolio weights. The distances between the estimator and the true value of the optimal weight and their corresponding utility functions are also discussed. Based on a comprehensive empirical analysis, I demonstrate that portfolios based on the new estimators can consistently outperform the portfolio based on naive diversification method (1/N Rule). Specifically, the optimized-optimal portfolio improves the out-of-sample Sharpe Ratio by 32% compared to the 1/N Rule.